Volume: 56 Issue: 4
Year: 2025, Page: 585-592, Doi: https://doi.org/10.51966/jvas.2025.56.4.585-592
Received: Aug. 4, 2025 Accepted: Oct. 6, 2025 Published: Dec. 31, 2025
Renal ischaemia-reperfusion injury (IRI) is a key precipitating factor in acute kidney injury (AKI) and contributes significantly to the development of chronic kidney disease (CKD). Understanding the temporal dynamics of renal tissue alterations following IRI is critical for determining effective therapeutic strategies. This study aimed to investigate the gross morphological, morphometric and histopathological alterations occurring in rat kidneys at distinct time points following unilateral renal IRI. Twenty-eight adult rats were divided into placebo and IRI groups. IRI was induced by clamping the left renal artery and vein for 60 minutes, while placebo animals underwent sham surgery without vascular occlusion. Animals were euthanised on days 7 and 14 post-surgery. Gross morphology, renal dimensions, organ weight and histopathological changes were evaluated and compared across groups. Placebo animals showed no gross or microscopic renal changes across both time points. In contrast, the IRI group exhibited time-dependent progression of renal injury. At day 7, kidneys showed moderate swelling, congestion and reduced corticomedullary demarcation. Histological findings included tubular degeneration, cast formation and interstitial inflammation—indicative of acute injury. By day 14, kidneys displayed severe gross abnormalities including cortical cysts, abscessations and atrophy. Histopathological examination revealed chronic damage with glomerular atrophy, interstitial fibrosis, endothelial injury and abscess formation. The study delineates the temporal evolution of renal damage following unilateral IRI, distinguishing an early phase (day seven) from a later phase (day 14). These findings provide a structural framework for evaluating interventions in experimental nephropathology.
Keywords: Unilateral renal ischaemia-reperfusion injury, gross morphology, morphometry, histopathology, acute kidney injury, rat model
Baracho, N. C. do V., Kangussu, L. M., Prestes, T. R. R., Silveira, K. D., Pereira, R. M., Rocha, N. P. and Silva, A. C. S. e. 2016. Characterization of an experimental model of progressive renal disease in rats. Acta Cirurgica Brasileira. [online]. 31: 744–752. Available: https://doi.org/10.1590/S0102-865020160110000007 [15 Jan. 2025].
Bonventre, J.V. and Yang, L. 2011. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121: 4210–4221.
Ferenbach, D.A. and Bonventre, J.V. 2015. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol. [online]. 11:264-76. Available: https://doi.org/10.1038/nrneph.2015.3 [02 Oct. 2024]
Furuichi, K., Kaneko, S. and Wada, T. 2009. Chemokine/chemokine receptor-mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin. Exp. Nephrol. [online]. 13: 9–14. Available: https://doi.org/10.1007/S10157-008-0119-5 [23 Dec. 2024].
Hesketh, E.E., Czopek, A., Clay, M., Borthwick, G., Ferenbach, D.A., Kluth, D.C. and Hughes, J. 2014. Renal ischaemia reperfusion injury: a mouse model of injury and regeneration. J. Vis. Exp. [online]. 88: 51816. Available: https://doi.org/10.3791/51816. ISSN 1940-087X [05 Nov. 2024].
Ichii, O., Nakamura, T., Irie, T., Kouguchi, H., Sotozaki, K., Horino, T., Sunden, Y., Elewa, Y.H.A. and Kon, Y. 2018. Close pathological correlations between chronic kidney disease and reproductive organ-associated abnormalities in female cotton rats. Exp. Biol. Med. [online]. 243: 418–427. Available: https://doi.org/10.1177/1535370218758250 [21 Nov. 2024].
Jubb, K.V.F., Kennedy, P.C. and Palmer, N. 2016. Pathology of domestic animals. (6th Ed.). Academic press. In: Elsevier eBooks. https://doi.org/10.1016/c2012-0-00823-x
Karami, M., Owji, S.M. and Moosavi, S.M.S. 2020. Comparison of ischemic and ischemic/reperfused kidney injury via clamping renal artery, vein, or pedicle in anesthetized rats. Int. Urol. Nephrol. [online]. 52: 2415–2428. Available: https://doi.org/10.1007/S11255-020-02611-X [17 Aug. 2024].
Karimi, F., Malek, M. and Nematbakhsh, M. 2022. View of the renin-angiotensin system in acute kidney injury induced by renal ischemia-reperfusion injury. J. Renin-Angiotensin-Aldosterone Syst. [online]. 1–10. Available: https://doi.org/10.1155/2022/9800838. ISSN 1470-3203 [07 Feb. 2024].
Khaleq, M.A.A., Hadi, N.R., Hanna, D.B. and Jasim, G.A. 2020. Role of oxidative stress and cytokines in renal ischemia reperfusion injury. Ann. Trop. Med. Public Health. [online]. 23: 23-115. Available: https://doi.org/10.36295/ASRO.2020.231105 [22 Feb. 2024].
Khalid, U., Pino-Chavez, G., Nesargikar, P., Jenkins, R.H., Bowen, T., Fraser, D.J. and Chavez, R. 2016. Kidney ischaemia reperfusion injury in the rat: the EGTI scoring system as a valid and reliable tool for histological assessment. J. Histol. Histopathol. [online].3: 1. Available: https://doi.org/10.7243/2055-091x-3-1. ISSN 2055-091X [30 Aug. 2024].
Khan, T.M. and Khan, K.N.M. 2015. Acute kidney injury and chronic kidney disease. Vet. Pathol. [online]. 52: 441–444. Available: https://doi.org/10.1177/0300985814568358 [19 Aug. 2024].
Kim, J., Kim, J.I., Na, Y.K. and Park, K.M. 2011. Intra-renal slow cell-cycle cells contribute to the restoration of kidney tubules injured by ischemia/reperfusion. Anat. Cell Biol. [online]. 44: 186–193. Available: https://doi.org/10.5115/ACB.2011.44.3.186 [20 Oct. 2024].
Koh, E.S. and Chung, S. 2024. Recent update on acute kidney injury-to-chronic kidney disease transition. Yonsei Med J. [online]. 65: 247-256. Available: https://doi.org/10.3349/ymj.2023.0306 [27 Mar. 2024].
Lu, C.Y. 2013. The inflammatory response to ischemic acute renal injury. In: Seldin, J. and Giebisch, G. (ed.), The Kidney: Physiology and Pathophysiology. (5th Ed.). Elsevier Inc, Philadelphia, USA, 3299p. https://doi.org/10.1016/B978-0-12-381462-3.00088-4
Makris, K. and Spanou, L. 2016. Acute kidney injury: diagnostic approaches and controversies. Clin. Biochem. Rev.37: 153–175.
Malek, M. and Nematbakhsh, M. 2015. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J. Ren. Inj. Prev. [online]. 4: 20–27. Available: https://doi.org/10.12861/JRIP.2015.06. ISSN 2345‑2781 [31 Mar. 2024].
Mehta, R. L., Kellum, J. A., Shah, S. V., Molitoris, B. A., Ronco, C., Warnock, D. G. and Levin, A. 2007. Acute kidney injury network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care. [online]. 11: R31. Available: https://doi.org/10.1186/cc5713. ISSN 1466‑609X [16 Jul. 2024].
Melin, J. 2002. Renal ischemia/reperfusion injury in diabetes: experimental studies in the rat. Doctoral thesis, Uppsala University, Medicinska vetenskapsområdet, http://www.divaportal.org/smash/record.jsf?pid= diva2:161515
Miao, J. and Han, F. 2024. Bilateral renal ischemia-reperfusion model for acute kidney injury in mice. J. Vis. Exp. [online]. 204: e65838. Available: https://doi.org/10.3791/65838. ISSN 1940-087X [15 Jun. 2024].
Oliveira, A. C. C., Módolo, N. S. P., Domingues, M. A. C. and Schwingel, P. A. 2019. Effects of cyclosporine on ischemia-reperfusion injuries in rat kidneys: an experimental model. Acta Cir. Bras. [online]. 34: e201900806. Available: DOI: http://dx.doi.org/10.1590/s0102-865020190080000006. ISSN 1678-2674 [22 Apr. 2024].
Salvadori, M., Rosso, G. and Bertoni, E. 2015. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J. Transplant. [online]. 5: 52–67. Available: https://doi.org/10.5500/wjt.v5.i2.52. ISSN 2220-3230 [12 Jan. 2024].
Shanley, P.F., Rosen, M.D., Brezis, M., Silva, P., Epstein, F.H. and Rosen, S. 1986. Topography of focal proximal tubular necrosis after ischemia with reflow in the rat kidney. Am. J. Pathol.122: 462–468.
Udupa, V. and Prakash, V. 2018. Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicol. Rep. [online]. 6: 91–99. Available: https://doi.org/10.1016/j.toxrep.2018.11.015. ISSN 2214-7500 [09 Sep. 2024].
Wang, H.J., Varner, A., AbouShwareb, T., Atala, A. and Yoo, J.J. 2012. Ischemia/reperfusion-induced renal failure in rats as a model for evaluating cell therapies. Ren. Fail. 34:1324-1332.
Wu, J., Pan, X., Fu, H., Zheng, Y., Dai, Y., Yin, Y., Chen, Q., Hao, Q., Bao, D. and Hou, D. 2017. Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci. Rep. [online]. 7: 10693. Available: https://doi.org/10.1038/s41598-017-10693-4. ISSN 2045-2322 [19 Jul. 2024].
Wu, Y., Zhang, J., Liu, F., Yang, C., Zhang, Y., Liu, A., Shi, L., Wu, Y., Zhu, T., Nicholson, M.L., Fan, Y. and Yang, B. 2013. Protective effects of HBSP on ischemia reperfusion and cyclosporine A induced renal injury. Clin. Dev. Immunol.[online]. 2013: 758159. Available: doi: 10.1155/2013/758159. ISSN 1740-2530 [14 Apr. 2024].
Wu, Y., Zwaini, Z., Brunskill, N.J., Zhang, X., Wang, H., Chana, R.S., Stover, C.M. and Yang, B. 2021. Properdin deficiency impairs phagocytosis and enhances injury at kidney repair phase post ischemia-reperfusion. Front. Immunol. [online]. 12: 697760. Available: https://doi.org/10.3389/FIMMU.2021.697760. ISSN 1664-3224 [11 Jan. 2024].
© 2025 Divya et al. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Divya, C., Devi, S.S, Sajitha, I.S, Prasanna, K.S, Vasudevan, V.N., Laiju M.P., Varuna P.P., Naidile, K.R. and Gokul, P. 2025. Comprehensive pathological and quantitative morphometric evaluation of unilateral renal ischaemia reperfusion injury in rat model. J. Vet. Anim. Sci. 56 (4): 585-592