Volume: 56 Issue: 3
Year: 2025, Page: 450-456, Doi: https://doi.org/10.51966/jvas.2025.56.3.450-456
Received: March 1, 2025 Accepted: May 14, 2025 Published: Sept. 30, 2025
Seroprevalence of Feline coronavirus (FCoV) and Severe acute respiratory syndrome coronavirus-2 (SARSCoV- 2) were analysed in a set of serum samples collected from domestic cats presented to tertiary care veterinary clinics during the first COVID pandemic wave in Thiruvananthapuram in 2021. In 156 samples analysed, virus-specific indirect ELISA detected the presence of FCoV antibodies in 72 samples (46.2 per cent) and SARS-CoV-2 antibodies in 12 samples (7.7per cent). Among the samples showing seropositivity for FCoV, 3.84 per cent had a significantly high antibody titre exceeding 1:6400 indicating the possible prevalence of Feline infectious peritonitis virus (FIPV), a serious and often fatal disease arising from mutations in FCoV. Among the 12 SARS-CoV-2 positive samples, six exhibited ability to neutralise SARS-CoV-2 pseudovirion infectivity, further confirming the specificity of the detection. Our data did not exhibit significant cross-reactivity between SARS-CoV-2 and FCoV antibodies. Even though there is no confirmed SARS-CoV-2 transmission from cats to humans, domestic cats may act as reservoirs, facilitate reverse zoonotic events and possibly promote viral mutations. Our observations reiterate the need of one health approach to prepare better for zoonotic threats and future pandemics.
Keywords: FCoV, SARS-CoV-2, cats, seroprevalence
Addie, D.D. and Jarrett, O. 1992. Feline coronavirus antibodies in cats. Vet. Rec.131: 202–203.
Addie, D.D, Toth, S, Murray, G. D. and Jarrett, O. 1995. Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus. Am. J. Vet. Res.56 (4): 429-434.
Bell, E.T., Toribio, J.A.L.M.L., White, J.D, Malik, R. and Norris, J. M. 2006. Seroprevalence study of feline coronavirus in owned and feral cats in Sydney, Australia. Australian Vet. J. 84 (3): 74-81.
Condor Capcha, J.M., Lambert, G., Dykxhoorn, D.M., Salerno, A.G., Hare, J.M., Whitt, M.A., Pahwa, S., Jayaweera, D.T. and Shehadeh, L.A. 2021. Generation of SARS-CoV-2 spike pseudotyped virus for viral entry and neutralisiation assays: a 1-week protocol. Frontiers Cardiovascular Med..7: 618651.
Cui, S., Liu, Y., Zhao, J., Peng, X., Lu, G., Shi, W., Pan, Y., Zhang, D., Yang, P. and Wang, Q. 2022. An updated review on SARS-CoV-2 infection in animals. Viruses.14 (7): 1527.
Dhama, K., Khan, S., Tiwari, R., Sircar, S., Bhat, S., Malik, Y.S., Singh, K.P., Chaicumpa, W., Bonilla-Aldana, D.K. and Rodriguez-Morales, A.J. 2020. Coronavirus disease 2019–COVID-19. Clin.Microbiol. Rev. 33 (4):10-1128.
Gao, Y.Y, Liang, X.Y, Wang, Q., Zhang, S., Zhao, H., Wang, K., Hu, G. X., Liu, W.J. and Gao, F.S. 2022. Mind the feline coronavirus: Comparison with SARS-CoV-2. Gene. 825: 146443.
Ishida, T., Washizu, T., Fukuoka, J., Toriyabe, K., Uchino, T. and Motoyoshi, S. 1987. Feline infectious peritonitis virus antibody test using enzyme-linked immunosorbent assay1987. Japanese J. Vet. Res.49 (1): 145-149.
Ji, W., Wang, W., Zhao, X., Zai, J. and Li, X. 2020. Cross‐species transmission of the newly identified coronavirus 2019‐nCoV. J. Med.Virol.92(4): 433-440.
Liu, Z., Xiao, X., Wei, X., Li, J., Yang, J., Tan, H., Zhu, J., Zhang, Q., Wu, J. and Liu, L., 2020. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV‐2. J. Med.Virol.92(6): 595-601.
Lupitha, S.S, Darvin, P., Chandrasekharan, A., Varadarajan, S.N., Divakaran, S.J., Easwaran, S., Nelson-Sathi, S., Umasankar, P.K., Jones, S., Joseph, I. and Pillai, M..R. 2022. A rapid bead-based assay for screening of SARS-CoV-2 neutralising antibodies. Antibody therap.5(2): 100-110.
Martina, B.E., Haagmans, B.L., Kuiken, T., Fouchier, R.A., Rimmelzwaan, G.F., Van Amerongen. G., Peiris, J.M., Lim, W. andOsterhaus, A.D. 2003. SARS virus infection of cats and ferrets. Nature.425(6961): 915.
Palermo, P.M., Orbegozo, J., Watts, D.M. and Morrill, J.C. 2022. SARS-CoV-2 neutralising antibodies in white-tailed deer from Texas. Vector-Borne Zoonotic Dis. 22(1): 62-64.
Pedersen, N.C, Boyle, J.F., Floyd,K., Fudge,A. and Barker, J. 1981. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am. J. Vet. Res. 42(3): 368-377.
Pedersen, N.C. 2014. An Update on Feline Infectious Peritonitis: Virology and Immunopathogenesis. Vet. J..201(2): 123-132.
Schulz, C., Martina, B., Mirolo, M., Müller, E., Klein, R., Volk, H., Egberink, H., Gonzalez-Hernandez, M., Kaiser, F., von Köckritz-Blickwede, M. and Osterhaus, A. 2021. SARS-CoV-2–specific antibodies in domestic cats during first COVID-19 wave, Europe. Emerg. Infect. Dis. 27(12): 3115.
Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z. and Zhao, Y. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science.368(6494): 1016-1020.
Spada, E., Canzi, I., Baggiani, L., Perego, R., Vitale, F., Migliazzo, A. and Proverbio, D. 2016. Prevalence of Leishmaniainfantum and co-infections in stray cats in northern Italy. Comp. Immunol. Microbiol. Infectious Dis.45: 53-58.
Tekelioglu, B.K., Berriatua, E., Turan, N., Helps, C.R., Koçak, M. and Yilmaz, H. 2015. A retrospective clinical and epidemiological study on feline coronavirus (FCoV) in cats in Istanbul, Turkey. Prev. Vet. Med.119(1-2): 41-47.
Tekes, G. and Thiel, H.J. 2016. Feline coronaviruses: pathogenesis of feline infectious peritonitis. Adv.Virus Res.96:193–218.
vanOosterhout, C., Hall, N., Ly, H. and Tyler,K.M. 2021. COVID-19 evolution during the pandemic–Implications of new SARS-CoV-2 variants on disease control and public health policies. Virulence.12(1): 507-508.
Vennema, H., Poland, A., Foley, J. and Pedersen, N.C. 1998. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology. 243(1):150-157.
Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W., Tian, J. H., Pei, Y.Y. and Yuan, M.L. 2020. A new coronavirus associated with human respiratory disease in China. Nature.579(7798): 265-269.
Yadav, R., Chaudhary, J. K., Jain, N., Chaudhary, P. K., Khanra, S., Dhamija, P., Sharma, A., Kumar, A. and Handu, S. 2021. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells. 10(4): 821.
Zhang, Q., Zhang, H., Gao, J., Huang, K., Yang, Y., Hui, X., He,X., Li, C., Gong, W., Zhang, Y. and Zhao, Y. 2020. A serological survey of SARS-CoV-2 in cat in Wuhan. Emerg. Microbes Infect. 9(1): 2013-2019.
© 2025 Sreeja et al. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Nair, S.R., Sreekumar, E., Dhanesh, V.V., Varghese, G.R., Ariya, A and Raj, R.S. 2025. Seroprevalence of Coronaviruses FCoV and SARS-CoV-2 in domestic cats in Kerala, India.
J. Vet. Anim. Sci. 56 (3):450-456