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Abstract

	 Aflatoxin	B1	(AFB1)	is	a	potent	mycotoxin	produced	by	Aspergillus	flavus	and	related	fungi,	posing	severe	health	
risks	to	humans	and	animals.	This	study	evaluated	the	aflatoxin	detoxification	ability	of	viable	and	killed	Lactobacillus	
rhamnosus	using	an	 in	vitro	binding	assay.	Five	experimental	groups	were	 included:	Treatment	1	contained	viable	L.	
rhamnosus	with	poultry	layer	feed	adjusted	to	30	ppb	AFB1	by	adding	contaminated	maize,	while	treatment	2	used	killed	
L.	rhamnosus	under	the	same	conditions.	A	positive	control	was	maintained	with	30	ppb	AFB1	alone.	Two	negative	controls	
were	prepared	using	feed	with	naturally	occurring	AFB1	(concentration	determined	after	preparation)	and	supplemented	
with	 either	 viable	 or	 killed	 L.	 rhamnosus.	AFB1	 levels	were	 quantified	 at	 3h	 and	 6h	 post-treatment	 using	 ultra-high-
performance	 liquid	chromatography	(UHPLC)	 following	 immunoaffinity	column	(IAC)	cleanup.	Statistical	analysis	was	
performed	using	RMANOVA	and	one-sample	t-tests.	The	results	demonstrated	a	significant	reduction	in	AFB1	levels	in	
the	presence	of	both	viable	and	killed	L.	rhamnosus.	AFB1	reduction	ranged	from	24.4%	to	28.2%	in	Treatment	1	and	
Treatment	2,	while	in	the	negative	controls,	the	reduction	was	between	16.7%	and	17.8%.	These	findings	highlight	the	
potential	application	of	L.	 rhamnosus	 in	aflatoxin	detoxification	strategies,	particularly	 for	 improving	feed	safety	 in	 the	
poultry industry.
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 Aflatoxins are secondary metabolites predominantly produced by Aspergillus spp., particularly A.	 flavus, A. 
parasiticus, and A. nomius. They are among the most toxic mycotoxins found in food and feed. Aflatoxin B1 (AFB1) is the 
most potent and carcinogenic, causing hepatotoxicity, immunosuppression, and economic losses in the agriculture and 
livestock industries (Petrova et al., 2022). 

 A global survey by Gruber-Dorninger (2019) reported that AFB1 was detected in 82.2% of feed and food samples 
collected from South Asia, the highest detection rate among all regions surveyed over ten years. A study conducted in 
Kerala, India, found AFB1 concentrations ranging from 1 to 400 ppb in 709 feed and feed ingredient samples, with poultry, 
duck, and quail feeds frequently exceeding recommended safety limits. AFB1 accounted for 66–82% of total aflatoxins 
in these samples (Becha and Devi, 2013). These findings highlight both the widespread prevalence and regional severity 
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of AFB1 contamination, underscoring the urgent need for 
effective detoxification strategies.

 Various approaches have been employed to 
reduce aflatoxin levels, including physical, chemical, 
and biological methods. However, chemical and physical 
treatments often suffer from limitations such as low 
efficacy, high cost, complex procedures, and the potential 
to produce toxic residues. These methods may also 
negatively impact the nutritional and sensory qualities of 
the treated feed. 

 Biological detoxification, particularly using 
microorganisms such as bacteria, yeasts, and non-
toxigenic Aspergillus strains, has emerged as a promising 
alternative (Alberts et al., 2006; Darsanaki et al., 2014). 
Among microbial agents, lactic acid bacteria (LAB) are 
promising agents due to their health-promoting properties 
and antifungal effects. Lactobacillus rhamnosus, a well-
studied LAB strain, has demonstrated significant aflatoxin-
binding capacity. However, the efficacy of detoxification 
varies with the strain, cell viability, and mechanism involved. 
While both viable and heat-killed cells have shown potential 
in binding AFB1, the role of metabolic activity remains 
unclear. This uncertainty raises an important question 
about whether detoxification is primarily enzymatic or due 
to passive adsorption by cell wall components.

 Accordingly, this study aimed to evaluate and 
compare the in vitro AFB1 detoxification potential of viable 
and heat-killed L. rhamnosus. The findings are expected to 
provide mechanistic insights and support the development 
of safe, efficient, and biologically based interventions for 
aflatoxin mitigation in animal feed.

Materials and methods

Bacterial culture and preparation

 The Lactobacillus rhamnosus culture was 
obtained from the Verghese Kurien Institute of Dairy and 
Food Technology (VKIDFT), Mannuthy. The bacteria were 
grown in De Man, Rogosa and Sharpe (MRS) broth at 37°C 
for 24 hours. The viable cell suspension was standardised 
to 10⁹ CFU/mL using both spectrophotometry (measuring 
optical density at 600 nm) and traditional spread plating 
on MRS agar, followed by incubation at 37°C for 48 hours. 
The bacterial suspension was autoclaved at 121°C for 15 
minutes in phosphate-buffered saline (PBS) to prepare the 
killed culture.

Fungal culture and maintenance

 The fungal culture, Aspergillus	 flavus NRRL 
6513 strain was obtained from the Central Avian Research 
Institute (CARI), Indian Veterinary Research Institute 
(IVRI), Izatnagar, India and maintained in Sabouraud 
dextrose agar (SDA).

Preparation of aflatoxin-contaminated maize

The preparation of contaminated maize was carried 
out following the method of Shotwell et al. (1966). Fifty 
grams of maize was placed in a 250 mL conical flask, 
and 25 mL of distilled water was added. The maize was 
then autoclaved at 121°C and 15 psi for 15 minutes. After 
cooling, a loopful of fresh A.	flavus spores was introduced. 
The flask was incubated for 10 days with regular shaking 
to prevent substrate clumping. After the incubation period, 
the contaminated maize was autoclaved, dried and once 
dried, it was finely ground into a powder.

Feed preparation

 The feed for the experiment was prepared 
according to the BIS standards for poultry layer phase 1 (IS: 
1374, 2007) the composition of which is given in Table 1. 
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Table 1. Ingredient composition of experimental feed 
(g/kg)

Poultry layer phase 1
Ingredients Parts (g/kg)

Maize 522
DORB 150

Soybean meal 230
wheat bran 49

Calcite 25
Grit 5

DCP 10
Methionine 2

Lysine 2
Salt 5

Experimental groups

 The experiment was conducted in five groups 
to evaluate the aflatoxin detoxification potential of L. 
rhamnosus. Treatment 1 included a viable culture of 
L. rhamnosus (10⁹ CFU) added to poultry layer feed 
containing 30 ppb AFB1, while treatment 2 consisted 
of a killed culture of L. rhamnosus (10⁹ CFU) with the 
same AFB1 concentration. The positive control group 
comprised poultry layer feed with 30 ppb AFB1 but without 
L. rhamnosus. Negative control 1 contained poultry layer 
feed without added AFB1, supplemented with a viable 
culture of L. rhamnosus, whereas negative control 2 
included poultry layer feed without added AFB1 but with a 
killed culture of L. rhamnosus.

Aflatoxin B1 quantification using UHPLC

 AFB1 levels in samples were analysed using 
ultra high-performance liquid chromatography (UHPLC) at 
the Central Instruments Laboratory, College of Veterinary 
and Animal Sciences, Mannuthy.



 Aflatoxin B1 standard (Trilogy, 25µg/ml, TAS-
M11DA1-10) and immunoaffinity columns (Aflarhone, 
wide, RBRP116/100) from R-Biopharm for the cleanup 
procedure were purchased from BVN Instruments 
(Madras) Private Limited, Chennai. HPLC-graded 
methanol (Himedia) and acetonitrile (Himedia) were used. 
Type I water was collected from the Milli-Q purification 
system.

 The analysis was conducted using a Dionex 
UltiMate 3000 UHPLC-FLD system (Thermo Fisher 
Scientific, USA), which included an autosampler, a 
fluorescence detector (FLD), a UV-Vis detector, and a 
diode array detector (DAD). Chromatographic separation 
was achieved through a reverse-phase C18 column (5 
µm, 4.6 × 250 mm, Agilent Technologies India Pvt. Ltd.) 
fitted with guard cartridges. The column temperature was 
maintained at 40°C, with an injection volume of 10 µL 
and a flow rate of 0.4 mL/min. The mobile phase was a 
mixture of 0.1% acetic acid in water (A), methanol (B), 
and acetonitrile (C) in a 30:35:35 ratio. The total run time 
was 12 minutes under isocratic conditions. Fluorescence 
detection was performed at an excitation wavelength of 
365 nm and an emission wavelength of 456 nm (Kumar et 
al., 2020).

Statistical analysis

 Statistical analysis was performed using SPSS 
version 24.0. Data were analysed using RMANOVA using 
the mixed model method to compare AFB1 reduction 
across treatments. A one-sample t-test was applied with 
test values given as the initial AFB1 levels.

Results and discussion

 This study evaluated the ability of viable and 
heat-killed L. rhamnosus to reduce AFB1 in poultry layer 
feed. Both viable and killed L. rhamnosus significantly 

reduced AFB1 levels over time, with reductions confirmed 
by statistical analysis (Table 2). The initial AFB1 level of 
30.79 ppb in treatment 1 and treatment 2 significantly 
declined after 3 and 6 hours of incubation, as did the 
levels in the negative control groups (initially 13.97 ppb); 
the data is graphically represented in Figure 1. These 
results indicate that metabolic activity is not required for 
AFB1 detoxification, as heat-killed L. rhamnosus exhibited 
a binding efficiency comparable to that of viable bacteria. 
A similar observation was seen in a study, in which AFB1-
exposed lactic acid bacterial cells, when incubated in 
toxin-free buffer or organic solvent, were found to release 
the toxin in its original form (Bueno et al., 2007).

 AFB1 reduction percentages ranged from 24.4% 
to 28.2% in treatment groups and 16.7% to 17.8% in 
negative control groups, suggesting that higher toxin 
concentrations enhance bacterial binding efficiency. 
Statistical analysis using a one-sample t-test confirmed 
that these reductions were significant at both time points.

 These findings are similar to previous studies that 
reported detoxification capabilities of lactic acid bacteria. 
Shah and Wu (1999) and El-Nezami et al. (1998) reported 
AFB1 reductions ranging from 20-80%, depending on the 
Lactobacillus strain used.

 Importantly, the results of this study also support 
the concentration-dependent nature of AFB1 binding. The 
greater reduction observed in groups with higher initial 
AFB1 levels (30.79 ppb) is consistent with the findings 
of Bueno et al. (2007), who reported that AFB1 removal 
initially increased with rising toxin concentrations, up to a 
saturation point beyond which removal efficiency declined. 
A linear relationship between AFB1 concentration and 
adsorption rate in various bacterial strains was observed 
by Liew et al. (2018), suggesting that adsorption is due to 
the availability of binding sites on the bacterial cell surface. 
Additionally, Lee et al. (2003) proposed that at higher 
AFB1 concentrations, a cross-linked matrix may form 
among bound AFB1 molecules, resulting in more stable 
adsorption on the bacterial surface.

 Binding efficiency varies among bacterial strains 
and incubation times. While El-Nezami et al. (2000) 
observed immediate AFB1 binding, Peltonen et al. (2001) 
found a time-dependent increase, followed by possible 
desorption. The present study found no significant 
difference between 3 h and 6 h incubations, except in 
treatment 1, indicating rapid binding within the initial 
hours.

  AFB1 detoxification appears to occur primarily 
through adsorption to bacterial cell wall components 
rather than enzymatic degradation. Similar binding efficacy 
observed between viable and heat-killed L. rhamnosus in 
this study reinforces this hypothesis. Previous studies have 
identified key structural components of the bacterial cell 
wall such as carbohydrate moieties, peptidoglycan, and 

Table 2. Effect of treatment and time on AFB1 levels¹

Treatment group 3h 6h p value

Treatment 1 23.29Ab

±0.377
22.14Bb

±0.305 0.025*

Treatment 2 22.11Ac

±0.455
22.78Ab

±0.493 0.174ns

Positive control 29.85Aa

±0.181
30.98Ba

±0.412 0.027*

Negative control 1 11.63Ad

±0.451
11.48Ac

±0.618 0.771ns

Negative control 2 11.50Ad

±0.415
11.59Ac

±0.304 0.862ns

P value <0.001 <0.001

¹Mean values based on 6 replicates with SE; ns-non significant 
(p>0.05)
*Mean is significantly different from the test value (p<0.05)
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safety. Further studies on bacterial cell wall components 
responsible for AFB1 binding will be useful in the food and 
feed industries.
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Conclusion
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