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Abstract

Skeletal muscle dysfunction is highly prevalent and is one of the earliest pathological tissue 
changes among people with at-risk alcohol use. Clinical studies to elucidate pathophysiological 
mechanisms of alcohol-mediated muscle disease are hampered due to ethical considerations, and 
confounded by nutritional, lifestyle, and comorbid conditions. Rodent models have been developed 
to study the impact of at-risk alcohol consumption and alcohol-mediated end organ injury, including 
skeletal muscle dysfunction. This review discusses results from well-established rodent models 
of alcohol administration and highlights key pathophysiological mechanisms underlying alcoholic 
myopathy identified in rodent models. Salient pathways include impaired regenerative capacity, 
altered anabolic/catabolic balance, impaired mitochondrial bioenergetic function, and skeletal 
muscle morphological and contractile changes. 
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Alcoholic myopathy, or decreased skeletal muscle mass or function, occurs in 40 to 60 
percent of people with at-risk alcohol use (Fernandez-Sola et al., 2007; Preedy et al., 2003) and 
is one of the earliest pathological tissue changes seen with alcohol use (Lang et al., 2005; Martin 
et al., 1985). Although alcohol-related muscle disease is nearly five times more common than liver 
cirrhosis (Estruch et al., 1993), mechanistic data are lacking on its contribution to long-term health, 
aging, as well as its association with injury, metabolic dysregulation, or disuse atrophy. Ethical 
issues, complexity of alcohol use patterns, and confounding comorbidities make clinical studies 
difficult and have led to the development of preclinical models, especially rodents, to understand 
alcohol-mediated pathophysiological mechanisms underlying human disease.  There are always 
concerns and questions regarding the use of animals in biomedical research and especially in 
substance use research. However, we obtain reliable data, there is great degree of experimental 
control and replicability, allowing for mechanistic investigation of human drug use and abuse. 
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why study alcohol and end organ injury? 

In the 1930s, E. M. Jellinek, a 
physiologist, described alcoholism (now 
referred to as alcohol use disorder; AUD) as 
a disease. His seminal paper provided clarity 
and removed stigma associated with AUD, and 
underscored that it was not due to weakness of 
will or temperament, moral failing, symptom of 
mental illness, but that it is a physical illness due 
to a pharmacologically addictive substance that 
can affect people from all sections of society 
(Jellinek and McFarland, 1940). However, at-risk 
alcohol use has adverse effects on many organ 
systems, including the liver, lungs, central and 
peripheral nervous system, immune system, 
and skeletal muscle. with such wide-ranging 
effects, it is critical to identify mechanisms 
leading to alcohol-mediated pathology to better 
manage and treat alcohol-related disease. 

Alcohol administration in rodents

Several reliable models of alcohol 
administration in rodents have been developed 
and there are benefits and drawbacks of 
each. Here, we briefly describe some of the 
most common models. Some of the models 
developed allow for excessive drinking and 
alcohol-seeking behavior demonstrating 
the rewarding effects of alcohol and their 
contribution to escalating alcohol use; others 
are more commonly used to study end-organ 
effects of alcohol.

1) Two-bottle choice method: Animals are 
allowed an unrestricted choice between 
alcohol and water for a predetermined 
amount of time up to 24 hours per day. 
Animals consume alcohol voluntarily. work 
with these models show heterogeneous 
populations of animals, like humans, some 
of which consume larger volumes of alcohol 
than others, and can help elucidate how 
certain factors, such as previous patterns of 
alcohol administration (Younis et al., 2019; 
Nentwig et al., 2019), influence alcohol 
preference. These studies have also shown 
that genetic manipulation by inbreeding or 
selective breeding can produce animals 
displaying different alcohol preferences 
(Grahame et al., 1999).

2) Operant models: Animals must perform a 
certain task for alcohol intake. For example, 
animals are trained to press a lever for 
alcohol to be delivered through the oral 
route, or in some cases directly into the brain. 
These models allow for the assessment of 
motivation to consume alcohol, such as after 
traumatic brain injury (Stielper et al., 2019) 
and to elucidate possible factors underlying 
motivation for alcohol, such as altered 
glucocorticoid receptor signaling (Pahng et 
al, 2019). 

3) Intragastric administration: Animals are 
administered alcohol via infusion directly into 
the stomach through surgically implanted 
intragastric tubes. This method is used to 
avoid the influence of taste and has been 
used to study alcoholic liver disease; e.g., 
Tsukamoto-French model (Tsukamoto et al., 
1990).

4) Alcohol-containing liquid diet: After transition 
from solid to liquid diet, alcohol containing 
liquid diet is the sole source of nutrition in this 
model. The alcohol content of the liquid diet is 
increased over the course of several days at 
the beginning of the experimental period and 
subsequently maintained at the target level. 
The most common diet used is the Lieber-
DeCarli diet (Lieber and DeCarli,1989) and 
the control diet is isocalorically matched to 
the alcohol calories. This strategy is widely 
used to study end-organ injury, including 
chronic alcohol-induced skeletal muscle 
pathology (Levitt et al., 2020c; Crowel et al., 
2016; Lang, 2018).

5) Oral gavage: Animals are orally administered 
alcohol via gavage. The oral gavage method 
is commonly used to study acute effects of a 
single dose of alcohol on muscle pathology 

or to administer ethanol at binge doses in 
combination with the Lieber-DeCarli diet; 
e.g. “binge-on-chronic” or “NIAAA model” 
(Samuelson et al., 2019; Bertola et al., 
2013).

6) Systemic injection: This is generally 
accomplished using an intraperitoneal 
injection and is commonly used to assess 
acute effects of alcohol on skeletal muscle 
(Steiner and Lang, 2015; Steiner et al., 
2016). 
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7) Inhalation of alcohol vapor: Animals are 
placed in chambers and exposed to alcohol 
vapor for specific periods of time, often 
referred to as “intermittent ethanol exposure”. 
This is a common method to make rodents 
dependent on alcohol (Gilpin et al., 2008; 
Mouton et al., 2016). 

8) Genetic models: Mice or rats are bred to 
create lines of animals that are sensitive or 
insensitive to alcohol and rat lines have been 
generated to select for alcohol preference. 
For example, selectively-bred Sardinian 
alcohol-preferring (sP) and non-preferring 
(sNP) rats reliably exhibit strong alcohol 
preference and motivation (sP) or strong 
avoidance (sNP) of alcohol (Colombo et 
al., 2006). Other genetic models of alcohol-
related behaviors include inbred strains, 
recombinant inbred strains, and transgenic/
knock-out mice (Mayfield et al., 2016). 

The metabolic rate of alcohol varies 
among species, and doses are optimized to 
generate blood and brain alcohol levels that 
produce pharmacological effects. For example, 
that rate of alcohol clearance is much greater 
in rats compared to humans and further varies 
among strains (Erickson, 1984; Holford, 1987). 
Because of the differences in rates of alcohol 
metabolism, while the method of alcohol 
administration may not exactly mimic human 
consumption, it serves to study the effects of 
alcohol on end organ injury. 

Rodent models commonly used to 
study alcoholic myopathy are chronic Lieber-
DeCarli diet feeding, oral gavage, or systemic 
injections. In addition, in vitro studies using 
established cell lines (e.g. C2C12 mouse-
derived myoblasts or primary myoblasts) are 
used to mechanistically understand how alcohol 
affects myoblast proliferation, differentiation, 
metabolism, and function. Here, we will discuss 
key findings of alcohol-mediated effects on 
skeletal muscle reported from studies utilizing 
rodent models. 

Muscle stem cell regenerative capacity

Rodent studies have demonstrated 
that chronic alcohol feeding increases skeletal 
muscle gene expression of TNFα and interleukin 

(IL)-6, indicating chronic inflammation (Steiner 
and Lang, 2015a) . Our published work 
showed decreased differentiation potential 
of skeletal muscle stem cells isolated from 
chronic binge alcohol-administered macaques. 
This was associated with reduced expression 
of myogenic genes and impaired myotube 
formation, indicative of impaired muscle fiber 
formation (Simon et al., 2014; Simon et al., 
2017). The marked dysregulation of myoblast 
myogenic and inflammatory gene expression 
and myotube formation with chronic alcohol 
administration reflects impaired muscle 
regenerative capacity and is likely to contribute 
to decreased muscle mass, especially in 
response to an injury or disuse atrophy. Alcohol 
and aging are risk factors for traumatic injury 
and subsequent immobilization-induced 
muscle atrophy (Lukaszyk et al., 2016). In fact, 
about 10-30% of hospitalized older patients 
have diagnosed AUD (O’Connell et al., 2003). 
Skeletal muscle recovery may be complicated 
by alcohol use and altered hormonal status 
among older individuals (Lukaszyk et al., 2016). 
To examine this question, we utilized Lieber-
DeCarli feeding in rats for 10 weeks culminating 
in 1 week of unilateral hind limb immobilization 
followed by 3 or 14 days of remobilization 
(Levitt et al., 2020c). Our data indicated 
that alcohol dysregulates the expression of 
markers of muscle regeneration following 
unilateral hind limb immobilization. Although 
alcohol did not significantly exacerbate 
the immobilization-mediated decrease in 
muscle weight, it is possible that underlying 
differences in regeneration may have occurred. 
Therefore, when immobilization is indicated, 
caution is warranted about alcohol use during 
the immobilization and post-immobilization 
recovery periods. 

Mitochondrial homeostasis and bioener-
getics

Alcohol impairs mitochondrial function 
in tissues including skeletal and cardiac muscle 
(Guo and Ren, 2010; Kumar et al., 2019; 
Duplanty et al., 2017; Duplanty et al., 2018), 
and mitochondrial homeostasis is critical in the 
maintenance of functional metabolic muscle 
mass (Romanello and Sandri, 2015). In chronic 
alcohol fed rats, decreased mitochondrial 
fusion and connectivity, calcium dysregulation, 
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and impaired mitochondrial bioenergetics and 
excitation-contraction coupling have been 
reported (Eisner et al., 2014; Trounce et al., 
1990). Studies also show that chronic alcohol 
decreases muscle cross sectional area with a 
decrease in total and free glutathione content, 
decreased glutathione reductase activity and 
decreased expression of oxidative stress 
genes (Otis and Guidot, 2010; Otis et al., 
2007). Together, a number of studies have 
shown alcohol-mediated oxidative damage in 
muscle as evidenced by an increase in protein 
carbonyl, cholesterol hydroperoxide, and 
malondialdehyde content (Otis et al., 2007; 
Koo-Ng et al., 2000). 

Alcohol-mediated impaired 
bioenergetics are not limited to mitochondria. 
Chronic alcohol administration results in 
skeletal muscle glycolytic impairments in 
rodents. For example, activity of the glycolytic 
enzymes aldolase, pyruvate kinase, and lactate 
dehydrogenase were significantly decreased 
in vastus lateralis after chronic ethanol 
administration (Trounce et al., 1990), mirroring 
findings in humans (Trounce et al., 1987). In 
contrast, opposite effects have been observed 
in white gastrocnemius muscle in male rats, 
suggesting a potential fiber type specific effect 
of ethanol on glycolytic enzyme activities 
(vila et al., 2001). Using transcriptomics, 
decreased expression of genes in the glycolytic 
pathway were also reported after C2C12 
myoblasts were treated with 100 mM ethanol, 
a supraphysiological dose, for 6 or 24 hours 
(Kumar et al., 2019). Although these previous 
findings were at the transcriptomic or enzyme 
activity levels, we recently confirmed that 3 
days of treatment with 50 mM ethanol impairs 
glycolytic function in live myoblasts in vitro 
(Levitt et al., 2020).

Skeletal muscle protein synthesis

Clinical studies provide evidence 
that a major mechanism of alcohol-induced 
myopathy is altered balance of protein synthesis 
and breakdown (Steiner and Lang, 2015; Reilly 
et al., 2000; Steiner et al., 2015). To identify 
alcohol-induced changes in specific proteins 
in the protein synthesis and degradation 
pathway, liquid alcohol diets have been used. 

The mammalian target of rapamycin (mTOR) 
pathway plays a central role in protein synthesis 
and is important for controlling skeletal muscle 
mass. mTOR activation activates two signaling 
pathways; S6 kinase 1 (S6K1) phosphorylation 
leading to activation of the ribosomal protein S6 
and phosphorylation of the eukaryotic initiation 
factor 4E (eIF4E)-binding protein (4EBP1) 
releasing its inhibition of the translation initiation 
factor eIF-4E. Chronic alcohol consumption 
decreases phosphorylation of mTOR itself 
(Lang et al., 2003a), ribosomal protein S6 
(rpS6), and phosphorylation of 4E-BP1 in 
skeletal muscle (Korzick et al., 2013). This is 
associated with a greater proportion of eIF4E 
in the inactive eIF4E-4EBP1 complex versus 
the active eIF4E-eIF4G and thus illustrates 
one possible mechanism by which alcohol 
decreases protein synthesis. Insulin and 
insulin-like growth factor (IGF)-1 are anabolic 
hormones that activate mTOR signaling. Acute 
ethanol markedly attenuated the insulin and 
IGF-1 mediated increases in S6K1 and rpS6 
phosphorylation but did not simultaneously 
impair signaling through 4E-BP1 (Kumar et al., 
2002). It should be noted that phosphorylation 
was measured at only one time point in that 
study, so it is possible that an acute effect 
was present at a different time point. However, 
ethanol attenuated the leucine-stimulated 
phosphorylation of 4E-BP1 and eIF4G in 
addition to mTOR, S6K1, and rpS6 (Lang et 
al., 2003). In addition, rodent models show that 
alcohol significantly decreases IGF-1 levels in 
both plasma and muscle, and this decrease 
is correlated with decreased muscle protein 
synthesis (Lang et al., 1998).  Overall, there is 
strong evidence that alcohol attenuates basal 
mTOR signaling after chronic administration, 
acutely attenuates mTOR signaling in response 
to anabolic stimulation, and may decrease 
systemic levels of the anabolic hormone, 
IGF-1. 

Skeletal muscle protein degradation

Protein degradation in skeletal 
muscle is directed primarily by two pathways, 
the ubiquitin proteasome pathway (UPP) and 
the autophagic-lysosomal system (Steiner and 
Lang, 2015; Steiner et al., 2015; white et al., 
2014).  The two ubiquitin ligases or atrogenes, 
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atrogin-1 and MuRF1 are specific to the 
muscle and are increased in several catabolic 
conditions. Both atrogin-1 and MURF1 are 
increased in acute and chronic alcohol 
administered rodents (Korzick et al., 2013; vary 
et al., 2008; vargas and Lang, 2008), possibly 
reflecting increased protein degradation 
activity. However, chronic alcohol did not further 
increase atrogin-1 and MURF1 expression or 
proteasomal activity in aged rats (Korzick et 
al., 2013). The autophagic-lysosomal system 
is activated due to cellular stress and mediates 
degradation of misfolded proteins. whether 
alcohol-mediated muscle protein degradation 
is mediated by autophagy is still not clear. In 
alcohol-fed mice, there is increased expression 
of autophagy markers and in vitro treatment 
of C2C12 myotubes with 100 mM alcohol (a 
supraphysiological level of alcohol) increased 
autophagic gene expression within 6h 
(Thapaliya et al., 2014). However, others have 
not observed this change in chronic alcohol 
fed mice (Steiner and Lang, 2015). Similarly, 
our studies in primary myoblasts derived from 
chronic alcohol administered macaques do not 
show changes in autophagic markers compared 
to myoblasts derived from vehicle administered 
macaques (Simon et al., 2014).  Thus, studies 
in rodent models suggest that alcohol-mediated 
decreased protein synthesis and increased 
protein degradation can potentially contribute 
to alcoholic myopathy.

Skeletal muscle mass and morphology

Decreased skeletal muscle mass is 
characteristic of chronic at-risk alcohol use, and 
structural abnormalities have been observed 
in muscle biopsy samples from such subjects 
(Fernandez-Sola et al., 2007). However, 
studying these phenomena in humans is 
complicated by differences in nutrition, current 
and past physical activity, hormonal status, etc. 
Therefore, rodent models have been employed 
to examine alcohol-mediated muscle wasting 
in controlled settings. For example, alcohol-
fed rats showed decreased lean body mass 
compared to pair-fed controls (Korzick et al., 
2013). A further benefit of studying such effects 
in rodents is that many individual rodent muscles 
have a more homogenous muscle fiber type 
population (e.g. gastrocnemius is composed 

of ~95% type II fibers) than in humans (e.g., 
gastrocnemius is composed of ~50% type II 
fibers). The homogenous fiber type composition 
allows for easier assessment of the effects of 
alcohol on different fiber types. Chronic alcohol 
(15% v/v in drinking water) decreased muscle 
fiber cross-sectional area across all fiber types 
in the plantaris, which is composed of ~95% 
type II fibers in rats (Vila et al., 2001). In the 
same study, muscle fiber cross-sectional area 
was unaffected in the type I-dominant soleus 
and red gastrocnemius muscles. we observed 
decreased quadriceps mass (white and red 
portions together) in the non-immobilized hind 
limb of alcohol-fed rats compared to their pair-
fed counterparts (Levitt et al., 2020c). without 
immobilization, type II-dominant plantaris 
mass and total protein were decreased in rats 
fed ethanol for 12 weeks (Clary et al., 2011). 
Ten weeks of alcohol feeding decreased total 
protein and RNA in type II-rich gastrocnemius 
and plantaris but not type I-dominant soleus, 
with concomitant decreases in expression of 
the structural proteins titin and nebulin in white 
gastrocnemius (Hunter et al., 2002), which 
could further contribute to alcoholic myopathy, 
particularly in type II muscle. Overall, results 
from rodent studies confirm that alcohol-
induced muscle wasting more severely affects 
type II-dominant muscle and provide a viable 
model to elucidate underlying mechanisms.

Skeletal muscle function 

Although skeletal muscle mass and 
function are generally related, a host of factors 
(bioenergetic, neurological etc.) confound this 
non-linear relationship. Even without sufficient 
time to decrease muscle mass, acute binge 
alcohol administration in humans after exercise-
induced muscle damage can exacerbate the 
exercise-induced decrease in force production 
in men (Barnes et al., 2010), although this effect 
does not appear to translate to women (Levitt et 
al., 2017), and is not apparent when participants 
are accustomed to the exercise (Levitt et al., 
2020b). For ethical purposes, the doses of 
alcohol used in human studies of acute binge 
drinking produce blood alcohol concentrations 
of only ~0.08-0.12 g/dL. This may be why an 
additional stimulus (e.g. exercise-induced 
muscle damage) is needed to uncover effects. 
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However, human consumption of ethanol can 
result in blood alcohol concentrations that far 
exceed those in these studies and may produce 
acute and cumulative effects on muscle 
function as muscle weakness is observed in 
approximately half of patients with AUD (Preedy 
et al., 2001).  Rodent models have been used to 
examine acute and chronic effects of alcohol on 
muscle contractile function. In one such study, 
extensor digitorum longus (EDL) contractile 
properties post-fatigue were impaired after 
chronic ethanol feeding but not 2 hours after 
acute ethanol intoxication @ 3 g/kg (Crowell et 
al., 2019). Previous work examining the acute 
effects of alcohol on muscle contractile function 
in rat EDL in vitro observed decreased twitch 
tension at higher (0.4 and 2.5 g% ethanol) but 
not lower (0.1 and 0.2 g% ethanol) ethanol 
doses (Taylor et al., 1992). These findings 
suggest dose dependent effects of alcohol on 
muscle function. Overall, more work is needed 
to elucidate effects of alcohol on skeletal 
muscle contractile function, and rodent models 
are well-suited for such studies.

conclusion

Alcoholic myopathy is more prevalent 
than well-known organ injury like alcoholic 
hepatitis. Clinical studies in human subjects 
with AUD are challenging for many reasons 
including the presence of confounding 
lifestyle factors, comorbid conditions, and 
varying patterns and severity of alcohol 
consumption. Rodent models of alcohol 
administration have allowed for controlled 
studies to standardize administration across 
subjects and minimize confounding factors. 
The specific experimental question and study 
design parameters must be considered when 
selecting an alcohol administration protocol. 
The most used experimental paradigms to 
study alcohol-mediated muscle pathology are 
alcohol-containing liquid diets (chronic model) 
and intraperitoneal injections or oral gavage 
(acute models). Using these rodent models, 
many factors underlying alcoholic myopathy, 
including impaired regenerative capacity, 
altered anabolic/catabolic balance, impaired 
bioenergetic function, and skeletal muscle 
morphological and contractile changes have 
been described. Thus, mechanistic studies in 

rodent models have helped identify key alcohol-
mediated pathways that are dysregulated and, 
in the future, may provide therapeutic targets to 
ameliorate alcoholic myopathy. 
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