Occurrence of thermophilic *Campylobacter* spp. in chicken meat breeds from an organised farm in Thrissur district

A. Kavya¹*, Deepa Jolly², C. Latha³, B. Sunil⁴ and Binoj Chacko⁵

Department of Veterinary Public Health
College of Veterinary and Animal Sciences, Mannuthy, Thrissur – 680 651
Kerala Veterinary and Animal Sciences University
Kerala, India

Citation: Kavya A., Jolly D., Latha C., Sunil B. and Chacko B. 2023. Occurrence of thermophilic *Campylobacter* spp. in chicken meat breeds from an organised farm in Thrissur district.
DOI: https://doi.org/10.51966/jvas.2023.54.3.641-646

Received: 15.11.2022 Accepted: 11.01.2023 Published: 30.09.2023

Abstract

Campylobacteriosis is one of the principal causes of gastroenteritis in the world. Poultry, being the natural reservoir, can harbour large number of Campylobacter in their caeca. The current study was carried out to assess the occurrence of thermophilic Campylobacter spp. in different meat type breeds in an organised farm. Out of the 120 cloacal swabs analysed, 31.67 per cent were found to be positive for Campylobacter spp. There was no significant difference in occurrence of Campylobacter spp. between different meat breeds. On molecular confirmation, majority of the isolates (71.05 per cent) were identified as *Campylobacter jejuni* and the rest as *Campylobacter coli* (28.95 per cent). The present study confirms a substantial degree of Campylobacter contamination in meat type chicken breeds in the farm. Good hygienic practices with better biosecurity measures and periodic screening of live poultry, poultry meat and its products are necessary to reduce the foodborne transmission of this pathogen to ensure safer food for consumers.

Keywords: Campylobacter spp., meat type breeds, culture, PCR

Globally, Campylobacter is the leading cause of bacterial gastroenteritis in humans. Foodborne outbreaks, which always pose a serious threat to mankind, have been associated with significant morbidity and mortality worldwide. Each year, 550 million people suffer from diarrhoeal diseases, with almost one in ten people falling ill due to campylobacteriosis (Nigusu *et al.*, 2022).

*Corresponding author:kavyad15@gmail.com, Ph. 9633747753

#Part of MVSc thesis submitted to Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala

1. MVSc Scholar, Department of Veterinary Public Health
2. Assistant Professor, Department of Veterinary Public Health
3. Professor and Head, Department of Veterinary Public Health
4. Director of Academics & Research, KVASU, Pookode, Wayanad
5. Assistant Professor and Head, UPDF, Mannuthy

Copyright: © 2023 Kavya *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Campylobacter is a Gram-negative, slender, non-spore forming, bipolar flagellated, spiral or helical shaped bacteria. Thermophilic Campylobacter grow best at 42°C and include C. jejuni, C. coli, C. lari and C. upsaliensis. Campylobacteriosis could be associated with some major complications like Guillain-Barre Syndrome (GBS), Reactive Arthritis (REA), Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS) and Miller Fisher Syndrome (MFS) (Vivekanandhan et al., 2022). Consumption of contaminated poultry meat and meat products can account for most cases of human campylobacteriosis. Campylobacter jejuni is usually seen in 2–3 weeks old broiler flocks, which corresponds with a fall in maternal antibody titres (Deepa et al., 2022). The intestinal tract of chicken, especially the caecum and colon, harbours a large number of Campylobacter spp. Campylobacter jejuni belongs to the normal avian microbiota and despite a huge colonisation number of up to 10⁸ Colony Forming Units (CFU) per gram of intestinal content, chicken generally remain asymptomatic (Konkel et al., 2007). Campylobacter infection has a complex epidemiology with diverse animal and environmental reservoirs along with numerous risk factors making them a serious public health threat. There is limited information available in Kerala regarding the occurrence of Campylobacter spp. in different meat type breeds in organised farm conditions. Hence, the present study was undertaken to assess the presence of Campylobacter in an organised farm in Thrissur district.

Isolation and identification of Campylobacter spp.

Cloacal swabs were directly plated onto Blood-free Campylobacter Selectivity (modified Charcoal Cefoperazone Deoxycholate, mCCD) agar media supplemented with CAT selective supplement (FD 145), Campylobacter supplement V (FD 067) and Polymyxin B selective supplement (FD 003) as per the procedure described by Chon et al. (2012). It was then incubated under microaerophilic conditions in a CO₂ incubator with 10 per cent CO₂ at 42°C for 48 h. Isolates were characterised using biochemical tests like gram staining, oxidase test, catalase test, aerobic growth test, hippurate hydrolysis and indoxyl acetate test described by Tenover and Fennell (1992) and followed by molecular confirmation.

Multiplex PCR for identification of Campylobacter spp

The isolates obtained were further subjected to confirmation by multiplex PCR for genus and species identification of Campylobacter spp. as per Denis et al. (1999) with slight modifications. The isolated DNA, from colonies on mCCDA plates were screened for the presence of Campylobacter spp., targeting genus-specific 16S rRNA gene. Species level identification was done by PCR for the detection of C. jejuni specific mapA gene and C. coli specific ceuE gene. The primer sequences used in the study are depicted in Table 1.

The multiplex PCR was done with a reaction mixture in a final volume of 30µL, consisting of 3 µL of 10X PCR buffer (200Mm), 2µL of MgCl₂ (25Mm), 0.75 µL of Taq DNA polymerase (5 Units/µL), 2.50µL dNTP Mix (2 mM) and 2µL of 16S rRNA (1 µL each forward and reverse primers), 2µL of mapA (10pmoles/µL) and 2µL of ceuE (20pmoles/µL) and 5µL of eluted DNA (50ng/µL) and nuclease free water. The mPCR amplification cycle included initial denaturation at 95°C for 10 min followed by 30 cycles of denaturation at 94 °C for 1 min, annealing at 51.8°C for 1 min and extension at 72°C for 1 min. The final stage was an extension cycle at 72°C for 10 min. The PCR

Materials and methods

Collection of samples

A total of 120 cloacal swab samples, 30 each from Gramasree, Red Cornish, Australorp and Rhode Island Red (RIR), were collected from an organised farm during a period of three months from December 2021 to February 2022. Swabs were transferred aseptically in Cary-Blair transport media under chilled conditions in thermo-cool containers to the laboratory of Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy. Samples were processed within four hours of collection to ensure that the organisms remain viable and culturable.

Occurrence of thermophilic Campylobacter spp. in chicken meat breeds from an organised farm in Thrissur district
was carried out in an automated thermal cycler (Bio-Rad T100 Thermal Cycler, USA). The final PCR products were visualised in two per cent agarose gel using SYBR safe DNA gel stain solution.

Results and discussion

After direct plating onto p-MCCDA agar and following incubation, greyish, flat, spreading type, shiny, mucoid and moistened colonies with a tendency to spread, and with or without metallic sheen was observed (Fig.1). Out of 120 samples, 38 samples that were positive for Campylobacter on culture were further subjected to molecular confirmation.

All the 38 isolates obtained were subjected to molecular confirmation by mPCR by targeting 16S rRNA gene for genus identification and mapA and ceuE for species level identification. An 816 bp amplicon was obtained upon PCR targeting 16S rRNA gene, 589 bp amplicon was obtained for mapA gene and 462 bp amplicons signaled ceuE gene (Fig. 2). The amplicons obtained consequent to PCR of species-specific mapA gene, ceuE gene were purified and were outsourced for sequencing and obtained accession number of C. jejuni- OQ164769, C. coli- OQ164770.

The genus specific 16S rRNA gene, for Campylobacter spp. was amplified in all the 38 isolates. The overall occurrence of Campylobacter spp. from cloacal swabs in the farm by culture and molecular methods was 31.67 per cent. Details of occurrence of Campylobacter spp. in cloacal swabs of different meat type breeds confirmed by molecular method is given in Table 2. There was no significant difference in the occurrence of Campylobacter spp. in different meat type breeds. The prevalence of Campylobacter obtained from meat type breeds in present study was in accordance with the results of Heuer et al. (2001) where they reported a 36.7

Table 1. Primers used for identification of Campylobacter

<table>
<thead>
<tr>
<th>Genes</th>
<th>Length (bases)</th>
<th>Primer sequence</th>
<th>Size (bp)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rRNA F</td>
<td>18</td>
<td>5'-GGATGACACTTTTCCGGAGC-3'</td>
<td>816</td>
<td>Linton et al. (1996)</td>
</tr>
<tr>
<td>16S rRNA R</td>
<td>18</td>
<td>5'-CATTGTAGCGCTGTGTC-3'</td>
<td>462</td>
<td>Denis et al. (1999)</td>
</tr>
<tr>
<td>ceuE F</td>
<td>23</td>
<td>5'-AATTGAAATTGCTCAAATG-3'</td>
<td>589</td>
<td>Denis et al. (1999)</td>
</tr>
<tr>
<td>ceuE R</td>
<td>23</td>
<td>5'-TGATTTTATTATTTGTCAGCG-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mapA F</td>
<td>24</td>
<td>5'-CTATTATTATTATTGTAGCTTG-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mapA R</td>
<td>25</td>
<td>5'-GCTTTATTGCTTTATTATTAT-3'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Occurrence of Campylobacter spp. in different chicken meat breeds

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Samples analysed (n)</th>
<th>Meat type breeds</th>
<th>Positive samples</th>
<th>Chi-square value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No.</td>
<td>Per cent</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>Gramasree</td>
<td>9</td>
<td>30.00</td>
<td>.770</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>Australorp</td>
<td>8</td>
<td>26.67</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>Red cornish</td>
<td>11</td>
<td>36.67</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>RIR</td>
<td>10</td>
<td>33.33</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td></td>
<td>38</td>
<td>31.67</td>
<td></td>
</tr>
</tbody>
</table>

Ns-nonsignificant at (p>0.05)
per cent of occurrence of Campylobacter in cloacal swabs collected from broiler flocks in Denmark. A similar prevalence study was done by Alam et al. (2020) where they reported 48.4 per cent of conventional farms and 20.7 per cent of good practice broiler farms in Bangladesh was contaminated by Campylobacter. A slightly lower prevalence (28 per cent) from backyard chicken cloacal swabs from Thrissur, Kerala was reported by Jacob et al. (2017). On the contrary, a higher occurrence of Campylobacter, 50.9 in broiler cloacal swabs were observed in Malaysia by Singulingga et al. (2019). Baali et al. (2020) from Algeria recorded an incidence of 65 per cent, an incidence rate higher than that of the present study.

Among the positive 38 isolates, C. jejuni specific mapA gene was amplified in 27 isolates (71.05 per cent) and C. coli specific ceuE gene was present in 11 isolates (29.4 per cent) (Table 3). This finding was in prefect tune with the result of Alam et al. (2020) where the authors identified 68 percent of isolates as C. jejuni. According to Schets et al. (2017) from Netherlands, all the Campylobacter isolates from caecal contents of broilers in a farm were C. jejuni. However, Pillay et al. (2020) reported a higher prevalence of C. coli (60 per cent) among the isolated samples from poultry farms of South Africa. Poultry is frequently colonised with C. jejuni (65–95 per cent), less often with C. coli and rarely with other Campylobacter spp. (Newell et al., 2001). The difference in occurrence of two Campylobacter species varies with region, species, climatic conditions and other environmental factors. The relatively lesser prevalence observed in different meat type breeds in the present study could be due to very good husbandry practices and proper biosecurity measures adopted in the organised farm and also could be due to seasonal variations. For the present study, samples were collected in the months of December to February, which could be correlated to the fact that lower incidence of Campylobacter was

**Table 3. Distribution of C. jejuni and C. coli in chicken meat breeds**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Breeds</th>
<th>Samples analysed</th>
<th>Positive for Campylobacter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. jejuni</td>
<td>C. coli</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number</td>
<td>Per cent</td>
</tr>
<tr>
<td>1</td>
<td>Gramasree</td>
<td>30</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Australorp</td>
<td>30</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Red Cornish</td>
<td>30</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>RIR</td>
<td>30</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>120</strong></td>
<td><strong>38</strong></td>
<td><strong>27</strong></td>
<td><strong>71.05</strong></td>
</tr>
</tbody>
</table>

**Fig. 2.** Agarose gel electrophoresis of mPCR product- 16s rRNA, ceuE, mapA. (PC1&PC2- Positive Control for C. coli & C. jejuni, L-100bp ladder, NC1&NC2-Negative Controls, S1,S2,S3 - Samples)
noted in winter months compared to summer (Baali et al., 2020). Frequent shedding of the organism in the faeces can contaminate feed, water and litter in the farm which can lead to rapid horizontal spread among the flock.

Thus, the present study confirmed the presence of Campylobacter contamination in cloacal swabs of meat type chicken which poses a great public health threat. Higher rate of contamination of caeca with this organism can lead to cross contamination during poultry processing and increase chances of risk to humans. Strict biosecurity measures, along with personal hygiene in poultry keepers need to be ensured through participatory training under a one health approach. Biosecurity and hygiene measures clearly have a great role in preventing flock colonisation in the field. Effective screening of poultry, poultry products and humans are much needed for the development of control strategies for this organism.

**Conclusion**

Campylobacter contamination was detected in cloacal swabs collected from different chicken meat breeds in an organised farm. This highlighted the importance of stringent hygienic practices and biosecurity measures along with effective monitoring which need to be followed, not only for prevention of foodborne infection but also for better production and performance of the poultry.

**Acknowledgements**

The authors are thankful to the Kerala Veterinary and Animal Sciences University for providing the facilities needed for carrying out the research and ICAR- Outreach Programme on Zoonotic Diseases for funding the research.

**Conflict of interest**

The authors declare no conflict of interest.

**References**


Konkel, M.E., Christensen, J.E., Dhillon, A.S., Lane, A.B., Hare-Sanford, R., Schaberg, D.M. and Larson, C.L. 2007. C. jejuni


