JVAS announces awards - Four best research articles (one each from basic, production, para-clinical and clinical subjects) and one best short communication will be adjudged for awards each year!!!

Journal of Veterinary and Animal Sciences

Volume: 50 Issue: 1

  • Open Access
  • Review Article

PARASITES AND PLASTIDS: BRIEF ROADMAP OF A COMPLEX RELATIONSHIP

Sethu C.Nair

Sethu C Nair, Post Doctoral Fellow, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. E mail : [email protected]

Year: 2019, Page: 1-6,

Received: Nov. 20, 2018 Accepted: Nov. 28, 2018 Published: Jan. 1, 2019

Abstract

Phylum apicomplexa form an important group of pathogens that include many parasitic organisms of medical and veterinary importance. Major members of that phylum that are responsible for debilitating diseases in humans and animals are Toxoplasma, Plasmodium, Babesia, Theileria, Eimeria and Cryptosporidium. Lack of effective vaccines and emerging resistance against available drugs demands improved and effective new strategies for prevention and treatment of the diseases caused by these pathogens. One curious and important organelle shared by these pathogens is named as apicoplast because of its similarity to plant chloroplasts. Apicoplast is indispensable for parasites belonging to phylum apicomplexa as it provides the parasites with important metabolic intermediates. The metabolic pathways hosted by the apicoplast that provides these essential metabolites are different from the corresponding pathways in the host organisms as the apicoplast has prokaryotic origins. This makes apicoplast and its metabolic pathways important and

Keywords:

References

Brooks, C.F., Johnsen, H., van Dooren, G.G., Muthalagi, M., Lin, S.S., Bohne, W., Fischer, K. and Striepen, B. 2010. The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. Cell Host Microbe. 7 : 62–73.

Chakraborty, A. 2016. Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for antimalarial drug development. Life Sci.158:104–110.

Foth, B.J., Ralph, S.A., Tonkin, C.J., Struck, N.S., Fraunholz, M., Roos, D.S., Cowman, A.F. and McFadden, G.I. 2003. Dissecting Apicoplast Targeting in the Malaria Parasite Plasmodium falciparum. Science. 299(5607):705- 708.

Gardner, M. J., Williamson, D. H. & Wilson, R. J. M. A. 1991. Circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Molecular and Biochemical Parasitology. 44.

Janouškovec, J., Horák, A., Oborník, M., Lukeš, J. & Keeling, P. J. A. 2010. Common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. doi:10.1073/pnas.1003335107.

Lim, L. & Mcfadden, G. I. 2009. The evolution, metabolism and functions of the apicoplast. doi:10.1098/rstb.2009.0273.

Mazumdar, J., Wilson, E. H., Masek, K., Hunter, C. A. and Striepen, B. 2006. Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci U S A. 103(35):13192-13197.

McFadden,G.I.,Reith,M.E.,Munholland,J.,an d Lang XUnnasch, N. 1991. Plastid in human parasites. Nature. 481. McFadden,G.I.,Waller, R. 1997. Plastids in parasites of humans. Bioessays. 19: 1033–1040.

Morrissette, N. S. & David Sibley, L. 2002. Cytoskeleton of Apicomplexan Parasites. Microbiol. Mol. Biol. Rev.66 :21–38.

Nair, S.C., Brooks, C.F., Goodman, C.D., Sturm, A., McFadden, G.I.,Sundriyal, S.,Anglin, J.L.,Song, Y., Moreno, S.N. andStriepen, B. 2011. Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma gondii. J. Exp. Med.208: 1547–1559.

Nair, S. C. and Striepen, B. 2011. What Do Human Parasites Do with a Chloroplast Anyway? PLoS Biol.9, e1001137.

Ralph, S. A., D’ombrain, M. C. and Mcfadden, G. I. 2001. MINI-REVIEWS The apicoplast as an antimalarial drug target. Drug. Resist. Updat. 4(3):145-51. doi:10.1054/ drup.2001.0205

Ralph, S.A., van Dooren, G.G., Waller, R.F., Crawford, M.J., Fraunholz, M.J., Foth, B.J., Tonkin, C.J., Roos, D.S. and McFadden, G.I. 2004. Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2(3):203-16. doi:10.1038/ nrmicro843.

Ramakrishnan, S., Serricchio, M., Striepen, B. and Bütikofer, P. 2013. Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans. Prog. Lipid. Res. 52(4):488-512. doi:10.1016/j. plipres.2013.06.003.

Van Schaijk, B. C. L. et al. 2014. Type II Fatty Acid Biosynthesis Is Essential for Plasmodium falciparum Sporozoite Development in the Midgut of Anopheles Mosquitoes. doi:10.1128/EC.00264-13

Wilson, R.J., Denny, P.W., Preiser, P.R., Rangachari, K,, Roberts, K., Roy, A., Whyte, A., Strath, M., Moore, D.J., Moore, P.W. and Williamson, D.H. 1996. Complete Gene Map of the Plastid-like DNA of the Malaria Parasite Plasmodium falciparum. J. Mol. Biol. 261 (2) : 155-172.

Wiesner, J., Steffen, A. E., Ae, B. and Jomaa, H. 2003. Fosmidomycin for the treatment of malaria. Parasitol. Res. .90: S71–S76. doi:10.1007/s00436-002-0770-9

Yeh, E. and DeRisi, J. L. 2011. Chemical Rescue of Malaria Parasites Lacking an Apicoplast Defines Organelle Function in Blood-Stage Plasmodium falciparum. PLoS Biol.9. e1001138.

Views
62
Downloads
17